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We propose a mathematical model of heat and mass transport processes in a moist, 
porous material subject to capillary action. The material is in contact with a 
heated surface, and the processes take place while the liquid is evaporating in 
a cavity with a drainage hole. A sample calculation based on the model is pre- 
sented. 

Among the methods used by contemporary technology for heat protection of devices are 
those based on the absorption of heat flux incident on the structure by evaporation [i] or 
melting [2] of a coolant contained in the structure. Capillary-active, porous materials 
(CPM) are usually used as the coolant carrier. Modeling of heat and mass transport pro- 
cesses in such evaporative thermal protection systems can be based on the methods of the 
theory of drying [3-5]. The problems encountered in this case are, in general, nonlinear, 
and can only be solved by numerical methods [6, 7]. 

Heat and mass transport processes in CPM are described by the laws of conservation of 
mass, momentum, and energy [8]. Usually, however, to simplify the problem, instead of solv- 
ing the momentum equations, which determine the transport velocities of each of the coupled 
materials, a connection is established between material fluxes and the gradients of the un- 
known functions [3, 7]. The transport coefficients entering into these expressions are de- 
termined experimentally, and in the calculations, they may be considered as known functions 
of the quantities to be determined [9]. This approach is also used in our work. 

i. Statement of the Problem. We consider the following evaporative thermal protection 
scheme. A heat flux qe(t) is incident on one of the sides (outer) of a plane, thermally 
thin wall. The heat flux is in general a function of time t. The wall has area S, thick- 
ness h w, and its material has density Pw and specific heat capacity c w. A layer of moisture- 
saturated, capillary-porous material of thickness ~ is in direct contact with the inner side 
of the wall, which is the opposite side that is exposed to the thermal action. The material 
is assumed to be homogeneous, to have porosity 9, density 90, specific heat capacity Co, 
and heat conduction coefficient ~0 in the dry state. Liquid evaporates from the free CPM 
surface into a cavity having volume V and depth L = V/S. There is a hole of area s in the 
cavity, through which the vapor-air mixture flows out into the exterior medium with pressure 
Pe(t). The cavity is thermally insulated. We neglect the heat capacity of the cavity walls. 

In the Case of uniform heat flux and when the condition ~ << r is satisfied, the prob- 
lem can be treated in a one-dimensional formulation. We introduce a coordinate axis x per- 
pendicular to the heated wall, with the origin in the plane of contact between the wall and 
the CPM layer. 

It is assumed that liquid, vapor, and air can be found in the material pores at the 
initial instant of time. We introduce the volume concentration of the i-th coupled material 
in the pores (the degree of saturation of the pores by the i-th material) ~i [i0]. For the 
gaseous phases ~v = ~a = ~g, and there holds the obvious relation 

~t + ~ -  1. (1) 

Denoting by ~i the derived density of the i-th material, we write the equation of mass 
conservation in the form 

at + V]~ = I~, (2) 
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where ~i = HPi~i, and 9i, Ji, li are the loading density, the flux, and the source term for 
the i-th material, respectively, and V = 3/3x. Obviously la = 0, I v = -Is 

For a poly-capillary CPM structure, the liquid flux can be caused by gradients in the 
fluid concentration ~s in the pores, temperature T gradients, and pressure p gradients of 
the vapor-air mixture [3]. The fluxes of vapor and air are caused by gradients in the pres- 
sure and mass concentration of the vapor in the mixture. Assuming that the percolation flow 
of the liquid and the gaseous phases are described by Darcy's law, we can write the flux 
of all three materials in the CPM in the form: 

]~ = - -  a~ (Flpzvo~t q- posy T) - -  K pz  KtVP, 
lzz 

(3) 

1o = - K o__. G y p -  n~++D+.p+v (P---"), (4) 

] ~ = - - K  p--~ KcVP + Hr (P-Y-~) �9 (5)  

In (3)-(5), az and 6 are the coefficient of fluid diffusion and the thermal gradient 
coefficient [9], K is the permeability coefficient of the material, ~ the coefficient of 
dynamic viscosity, Def f is the effective vapor diffusion coefficient in the CPM [7], p = 
Pv + 0a; Ks and Kg are the relative permeabilities of the liquid and gaseous phases, w~ich 
are characteristics of the specific material and which depend on ~s in a manner that is quite 
complex [7, 9]. The simplest approximation which qualitatively reflects the dependence of 
the phase permeabilities on ~s is that they are equal to the volume concentrations of the 
phases [I0]. This is what we shall adopt in our work. 

Henceforth, on the basis of (i), we will not consider pore saturation by the gaseous 

phases ~g, and we introduce the notation ~ ~ ~. 

Summing (2) over i = E, v, we obtain the equation for conservation of moisture 

H O [(9z--Pv)~+Pv]@V]m=O, i r a = i t + i v "  (6)  
Ot 

Equation (2) with i = a serves to determine the density of the air: 

n 0--~- [(1 --~)Pa] + via = O. (7) 
Ot 

The conservation of energy equation is represented as: 

o___ Io~ poT + + -  v (8) 
Ot 

where Cef f = c 0 + H[CD~9~ + (i -- ~)(Cpv9 v + Cpap~)]/90, Cpi (i = s v, a) are the specific 
heat capacities at cohstant pressure; r0 is the specific heat of evaporation at T = 0 K, 
which is determined on the basis of known values of the heats of evaporation r(T), according 

to r0 = r(T) + (CpE - Cpv)T. 

We assume that the vapor-air mixture is a mixture of ideal gases, and that its pressure 

is determined by 

P = (PdMv q- pafM~)RT, (9)  

where R is the universal gas constant, and M i (i = v, a) are the molecular weights. 

To close the system (6)-(9), we use the assumption that, in the region of a "moist" state 
of the CPM, that is, for ~ > 0, the vapor is in a state of saturation. Consequently, its 

density i-s a function of temperature only: 

O~=Oo~(T) for ~>0. ( lO)  

Condition (i0) also denotes what is considered a typical capillary-porous material, 
for which it is possible to neglect the hygroscopic-state stage [Ii]. To determine the func- 
tion 0vs(T), we use the Filonenko formula [4], if water is used as the coolant. 
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The generally adopted equations of heat and mass transport in CPM are in the form of 
the system of equations of Lykov [3], or the equations of [7]. We note that, unlike these 
forms, representation (6)-(10) has the advantage that the vapor source term I v can be elim- 
inated from the number of unknowns (~, T, pa). The source term I v can be determined, after 
solution of the system, from (2) with i = v, taking (4) and (i0) into account. This somewhat 
simplifies the numerical algorithm for solving the problem and reduces the computational 
time. In addition, the so-called criterion of phase transition enters into the Lykov equa- 
tions. The dependence of this criterion on various parameters is very complicated [ii], 
and in calculations it is prescribed quite arbitrarily [6]. 

Besides the particular ease of carrying out the algorithm of numerical solution, there 
is also the fact that (6), with the appropriate boundary conditions, remains valid even in 
the "dry" zone of the CPM, that is, during formation of a region without liquid. In such 
a material zone, ~ = 0 and I v = 0, and (i0) is no longer valid, while (6) becomes an equa- 
tion for conservation of vapor mass and serves to determine the vapor density Pv" Thus, 

is the unknown in (6) in the "moist" region, while Pv is the unknown in the "dry" region. 

The boundary conditions for (6)-(10) are formulated in the following fashion. At ini- 
tial time t = 0, the vapor-air mixture pressure in the CPM and in the cavity are equal to 
the external pressure Pe(0) = P0. In this case, the vapor pressure is equal to the satura- 
tion pressure for the initial temperature of the entire system To. Thus, for 0 ~ x ~ ~: 

T(x, O)=T0,  ~(x, 0 ) = ~ 0 ~ t ,  9a(x, 0 ) =  P~176 (11)  
RTo 

The b o u n d a r y  c o n d i t i o n s  e s t a b l i s h e d  on t h e  i n n e r  s u r f a c e  o f  t h e  h e a t e d ,  impermeable  
w a l l  (x = O) a r e  o b v i o u s :  

OT 
q~ = -- kvT + O~c~.&L. W ~ ri~' l m =  0, i~ = 0, (12)  

where r = r0 = (Cps - Cpv)T. 

The b o u n d a r y  c o n d i t i o n s  on t h e  f r e e  s u r f a c e  o f  t h e  CPM, which l e a d s  i n t o  t h e  c a v i t y  
(x = s are: 

V aT 

V (R~ Op~ 

+v t , +vaO  
p ,  - - E  ' p" = ( z 3 )  

Q~ = s ? I ~-~-I) Q (~p) p~ (RgT~)-'/2, s v =  P__G~, 
' P r  

( 1 - - s ~ )  v , 6 v >  

,, 2 / , - i  

where T c and Pc a r e  t h e  t e m p e r a t u r e  and p r e s s u r e  in  t h e  c a v i t y ;  Qe i s  t h e  gas  d i s c h a r g e  
t h r o u g h  t h e  d r a i n a g e  h o l e ,  d e t e r m i n e d  by t h e  f o r m u l a s  o f  o u t f l u x  f rom t h e  c a v i t y  [ 1 2 ] .  

Boundary  c o n d i t i o n s  (13)  were  o b t a i n e d  assuming  t h a t  t h e  g r a d i e n t s  o f  t e m p e r a t u r e ,  p r e s -  
s u r e ,  and v a p o r  c o n c e n t r a t i o n  a c r o s s  t h e  c a v i t y  a r e  i n s i g n i f i c a n t ,  and t h a t  t h e  v a p o r  p r e s -  
s u r e  in  t h e  c a v i t y  i s  c l o s e  t o  t h e  s a t u r a t i o n  p r e s s u r e  a t  t h e  c a v i t y  t e m p e r a t u r e .  Below 
we g i v e  t h e  c o n d i t i o n s  under  which t h e s e  a s s u m p t i o n s  a r e  v a l i d .  

C l e a r l y ,  t h e  p r e s s u r e  g r a d i e n t  in  t h e  c a v i t y  w i l l  be s m a l l  f o r  t h e  p r i m a r i l y  s u b s o n i c  
v e l o c i t i e s  o f  o u t f l o w  from t h e  CPM, t h a t  i s ,  f o r  low e v a p o r a t i o n  r a t e s .  From t h i s  comes 
a bound on t h e  e x t e r n a l  t h e r m a l  f l u x :  

227 



q~ / ~ < <  1. 
rpv [ /  Pe 

For low evaporation rates, after complete displacement of the air from the material 
and cavity, the Hertz-Knudsen formula can be used to estimate the evaporation rate: 

]~ - - - .  P ~  - -  p~ 

(2nR~T~)I / 2 

Since in this case Sjm - Qe, where Qe <- sPv/(RvTc) I/2 we obtain the condition of the 
proximity of the vapor state in the cavity to a saturated state: 

P % - - I N  S << 1. 
Pv S 

The c o n d i t i o n  t h a t  t h e  t e m p e r a t u r e  g r a d i e n t  be s m a l l  can be o b t a i n e d  f rom t h e  e n e r g y  
e q u a t i o n  f o r  t h e  m i x t u r e  o f  g a s e s ,  n e g l e c t i n g  c o n v e c t i v e  t r a n s p o r t .  C l e a r l y ,  in  t h i s  c a s e ,  
we have an upper estimate: 

AT ~ .Cveg~L 2 OT~ (< 1.  
T~ ~To Ot 

In the presence of air, the vapor concentration gradient along the cavity is estimated 
from the diffusion equation. Since close to the surface of the moist material, 8pv/3t - 
dPvs/dT'ST/St , then by comparing the unsteady and diffusion terms, we obtain the condition: 

Apv L ~ dpv~ OT~ 
~ - -  <<1. 

p~ p~D dT Ot 

It is evident that the presence of convective transport only weakens this condition. 

Thus, the conditions have been formulated for which boundary conditions (13) can be ap- 
plied to the free surface of the CPM. 

2. Solution Method. A purely implicit, two-level, four-point conservative difference 
scheme is used to numerically solve the formulated boundary-value problem (6)-(13). The 
scheme uses constant step size in x, and is constructed on the basis of the integral-inter- 
polation method [13]. The scheme is second-order accurate in space and first-order in time. 
The resultant system of nonlinear algebraic equations is solved using Newton's method. 

When a "dry" zone occurs close to the heated surface x = 0, the method of trapping its 
boundary at the nodes of the difference mesh [14] is used. The required time step is found 
from the condition that the function ~ vanish at the boundary of the zone. To determine 
the time step, Newton's method with correction multipliers is applied. At the boundary of 
the "dry" zone, the following conditions must be satisfied: 

T_=T+,  q-- -q+=--r] l+,  ] l - = O ,  ],---j~+=]l+, ( 1 4 )  

P~- = P,+ = P~ (T_), ]~_ = ]~+, Pa- = Pa+" 

Here the subscripts + and - denote the limits of the corresponding function tending toward 
the boundary from the "moist" (~ > 0) or the "dry" (~ = 0) side of the zone, respectively. 
In (14), q is the heat flux. On the basis of the integral-interpolation method, it is easy 
to show that when the boundary is located at difference mesh nodes, the fine-differencing 
of the divergence terms in (6)-(8) does not change, and (14) is automatically satisfied. 
To approximate the unsteady terms in (6)-(8) at mesh nodes corresponding to boundary zones, 
the following formula is used to preserve second-order accuracy in x: 

Xn~AX/2 
1 u (x, t) dx ~-- A- !  (u~-I + 6u~ + U~+l), 

Xn~X/2 8 

where n is a boundary node number and Ax is the mesh step size. This approximation is neces- 
sary because of discontinuities in the derivatives of the unknown functions at these boundary 

node points. 

3. Sample Numerical Solution. To illustrate the use of this model, we carried out 
calculations for one set of parameters governing the problem. Water was used as the coolant. 
The calculations were done for constant heat flux qe = I0~ W/m2 and constant external pres- 
sure Pe = 104 Pa. The initial temperature of the system is To = 290 K. The heated wall 
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Fig. i. Dimensionless temperature of the heated wall Tw, cav- 
ity temperature T c, and the integrated moisture saturation of 
the material U as functions of the Fourier number Fo. 

Fig. 2. The dimensionless vapor flux at the impermeable sur- 
face (i), the dimensionless vapor flux from the free surface 
(2), and the total dimensionless moisture flux from the free 
surface of the material (3) as functions of the Fourier num- 
ber Fo. 

parameters are h w = 0.002 m, 0w = 2.7"103 kg/m3, Cw = 0.9"103 J/(kg'K). The cavity param- 
eters are L = 0.03 m and s/S = i0 -4 

The dependence of the transport coefficients on the unknown functions is prescribed 
using considerations of qualitative plausibility. The coefficients of thermal conductivity 
of the CPM and the liquid diffusion are defined in the form of continuously differentiable 
functions of a, which grow monotonically from 0 to some value with increasing a, and then 
remain constant with subsequent growth in a [9]: 

~' (~) : i ~,o + (,%z - -  s sin ( a ~ / 2 ~ J ,  ~ ~ m>,, 
L s a > ax, 

al (T. cz) = J [alo + ( a l l - -  alo) sin ( a a / 2 % ) ]  (T /273)% a -~ a~, 
/ alz (T/273) 2~ a > a .  

According to [15], the dependence of the thermal gradient coefficient on moisture satu- 
ration, for the majority of CPMs, can be represented in the form of a parabola: 

( a )  = 8 0 [I - -  4 ( a  - -  1/2)2] .  

The numerical values of the CPM parameters are: s = 0.005 m, P0 = 150 kg/m s, co = i0 a • 
J/(kg'K), X 0 = 0.06 W/(m'K), Xs = 0.6 W/(m'K), ~ = 0.i, as = 5"10-9 m2/sec, as = 1.5as 
aa = 0.i, 60 = 10 -3 K -I, K = i0 -l~ m2, ~ = 0.9, and a0 = 0.2. The viscosity coefficients 
of water and gas, and the effective vapor diffusion coefficient as well are assumed to be 
constants: ~ = 5"10 -4 kg/(m'sec), Dg = i0 -s kg/(m'sec), Def f = 5-i0 -s m2/sec. 

Figure 1 shows the dependence on Fo = X0t/(cop0s 2) of the temperature of the heated 
surface T w = T(0, t)/T0, the cavity temperature T c = T(~, t)/T0, and the integrated moisture 
saturation of the material 

v = ! i c, (x, t) dx. 
l 

0 

From these curves it is obvious that after a period of heating, there follows a period 
of approximately constant temperatures. From the moment of formation of the "dry" zone at 
Fo = 0.438, the temperature of the heated wall grows almost linearly. At the same time, 
the cavity temperature drops sharply and then remains constant until the liquid has complete- 
ly evaporated at Fo --~--0.65. Since the air leaves the system at Fo ~-0.I, then by the time 
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Fig. 3. Distribution of moisture saturation with material 
thickness for three times: i) Fo = 0.04; 2) Fo = 0.26; 3) 
Fo = 0.48. 

Fig. 4. The dimensionless position and rate of motion of 
the "dry" zone boundary as functions of the Fourier number. 

the "dry" zone appears, the cavity pressure is equal to the saturated vapor pressure, and 
it also decreases sharply and subsequently remains constant at a little above the external 
pressure. 

The pattern of mass transport in the CPM is as follows. During heating of the system, 
a negative temperature gradient arises near the impermeable surface, which is accompanied 
by the appearance of a negative pressure gradient. In turn the latter, as a consequence 
of the final condition in (12), induces a negative vapor concentration gradient. A vapor 
flux arises at the impermeable surface, due to the action of the pressure and concentration 
gradients. This flux is directed into the material. As a result of the second condition 
in (12), the flux is compensated for by a liquid flux toward the heated surface. The time 
dependence of the vapor flux at the surface x = 0 is shown in Fig. 2 (curve i). Vapor pene- 
trating inside the CPM partly condenses (the vapor source term is negative for all material 
thicknesses), and partly reaches the CPM free surface. This vapor flux from the free sur- 
face is also shown in Fig. 2 (curve 2). The liquid flux changes sign at some distance from 
the impermeable surface. The liquid, flowing under the action of the pressure and tempera- 
ture gradients to the CPM free surface, evaporates at this surface. The total flux of the 
evaporated moisture in the cavity is shown in Fig. 2, curve 3. Naturally, the moisture flux 
at x = 0 disappears with the formation of the "dry" zone. Then there is a sharp reduction 
in the vapor flux moving from the "dry" zone boundary to the CPM free surface, and in the 
total evaporation rate. Note that in Fig. 2, the dimensionless fluxes ~ = j~/(a~0P0) are 
represented. 

Figure 3 shows the distribution of moisture saturation ~ with material thickness x = 
x/s at three times, corresponding to the periods of heating, constant temperature, and the 
presence of the "dry" zone. Despite the increase in the liquid flux toward the impermeable 
surface with time (up to the formation of the "dry" zone), the gradient in ~ decreases in 
it. This is connected with the strong growth in the liquid diffusion coefficient with in- 
creasing temperature. 

The profiles of temperature and pressure as a function of material thickness have the 
following features. In the heating period, both T(x, t) and p(x, t) have a positive second 
derivative in x, but in the constant temperature period, this derivative is negative. The 
pressure is almost constant in the "dry" zone, while the temperature decreases approximately 
linearly from x = 0 to the boundary zone. In the "moist" region, the second derivative in 
x changes sign for both functions from negative to positive with increasing x. 

Figure 4 shows the time dependence of the position and the rate of motion of the "dry" 
zone boundary. 

Conclusion. On the basis of this mathematical model, it is possible to study the effect 
of the properties of the coolant carrier, the heating regimes, and other parameters on the 
characteristics of the thermal protection system considered here. 
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NOTATION 

q, the heat flux; t, time; S, wall area; p, density; c, specific heat capacity; %, co- 
efficient of thermal conductivity; hw, wall thickness; ~, thickness of the capillary-active 
porous material; T, temperature; p, pressure; ~, volume concentration of the coupled materi- 
als in the pores; V and L, volume and depth of the cavity; s, area of the drainage hole; 
j, material flux; I, material source term; K, porosity; K, permeability; D, coefficient of 
viscosity; Deff, effective coefficient of vapor diffusion in the pores; a~, liquid diffusion 
coefficient; 6, thermal gradient coefficient; R, gas constant; M, molecular weight; r, spe- 
cific heat of evaporation; Qe, gas outflux through the drainage hole; ep, pressure gradient; 
y, adiabatic index; Fo, Fourier number. Indices: w, wall; ~, liquid; v, vapor; m, moisture; 
a, air; g, vapor-air mixture; s, saturation state; c, cavity; p, constant pressure quantity; 
0, a characteristic value or the material in the dry state; v, a constant volume quantity. 
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